登陆注册
10942900000013

第13章 天文科学知识(4)

1940年,马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,在一定条件下,弯月形副镜不仅能产生色差,且能补偿球面主镜所产生的球差。此外,光阑和厚透镜的位置接近于主镜的球心,产生的轴外像差很小。它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短。

施密特式望远镜

施密特式望远镜的主镜是一个凹球面反射镜,另一块是接近平板的非球面薄透镜,又称改正透镜。透镜的一面为平面,对向光线,另一面磨成奇特的形状,安放在主镜的曲率中心处,使中心区与边缘区的曲率不同。利用改正镜与球面反射镜巧妙的配合,可以消除主镜造成的球差(光线从主轴某一点上射向望远镜,折射后不能交于同一位置,而是在理想像平面上形成各种同样大小的圆斑),同时也较好地消除轴外像差。

开普勒式望远镜

1611年,德国天文学家开普勒用两片凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。它也是折射式望远镜的一种。物镜组为凸透镜形式,目镜组也是凸透镜形式。这种望远镜成像是倒立的,但视场可以设计得比较大。现在几乎所有的折射式天文望远镜的光学系统都是开普勒式的。

色差

不同波长的光在相同介质中有不同的折射率,所以轴上焦点位置不同,因而造成色差。它一般可分为两种:一种是光轴的色差,另一种是倍率的色差。

消色差透镜

折射望远镜的凸透镜聚焦之余,会像棱镜一样产生彩虹般的色彩。因此光学制作者需要挑选另一种光学玻璃,把它磨成凹透镜,放在原有的凸透镜后面。凹透镜本身的色散会尽量把凸透镜的色散抵消,但同时保留整组透镜的一点聚焦力。(如用同种光学玻璃的凹透镜,色差可完全消除,但同时聚焦能力也抵消了。)这种设计的物镜叫做消色差透镜。

凯克望远镜

凯克望远镜位于夏威夷,是目前世界上最大的望远镜,镜面直径为10米,由36面长1.8米的六角型镜面拼合而成。计算机每秒钟两次将所有的镜片排列在3×10毫米以内,电视监视器可使科学家看到望远镜所看到的一切。这台望远镜耗资1.3亿美元,主要是由美国企业家凯克捐助修建的,第一座凯克望远镜建造成功后,凯克基金会又修建了凯克2号望远镜,两座连在一起。

射电望远镜

接收并研究来自太空射电波的仪器统称为射电望远镜。射电望远镜最常见的为碟形,它的结构主要由定向天线或天线阵、馈电线、高灵敏度接收机和记录仪或示波器等部分组成。天线或天线阵将收集到的天体电波,经过电线送到接收机上,接收机具有极高的灵敏度和稳定性,首先将微弱的天体电波高倍放大,再进行检测,让高频信号转变为低频形式,最后送到记录仪上记录下来,或在示波器上显示出来。

甚大望远镜

甚大望远镜(VLT)位于智利欧洲南方天文台,它由四座直径为8.2米的望远镜组成,四座望远镜之间通过电脑连接以便收集更多的光线。其功效相当于单一的一座直径为16.4米的望远镜。这四座望远镜其中每一座的观测能力都超过了肉眼的10亿倍。科学家们把这望远镜同一种“适应光学”的技术相连,克服了大气层扰动导致光线抖动的缺憾,从地面上捕获了较高清晰度的目标。

紫外线望远镜

紫外线望远镜是角于紫外波段研究的望远镜。紫外波段是介于Χ射线和可见光之间的频率范围,观测波段为100~4000埃。紫外观测要放在150千米的高度才能进行,以避开臭氧层和大气的吸收。被命名为哥白尼号的OA0—3携带了一架直径为0.8米的紫外先望远镜,已在卫星轨道上正常运行了9年。

红外线望远镜

利用红外线望远镜可看到星云内部的状况,譬如星群的形成。由于新生成的星球温度约为200~500℃,因热而辐射出红外光波的光芒可穿透周围的冷云气团。所以在红外线望远镜中,它是明亮而清楚的光点,而光学望远镜却仅能看到云气团。通过红外线望远镜还可清楚地看到云气内部的黑洞。

Χ射线望远镜

Χ射线望远镜是观测宇宙天体所辐射的Χ射线的仪器。由于地球大气对Χ射线的强烈吸收作用,所以Χ射线望远镜只能装置在航天器上进行观测。它有Χ射线成像望远镜和“爱因斯坦”Χ射线望远镜两种。为了减少像差,望远镜的光学系统由几个同轴共焦的旋转圆锥面叠套而成。望远镜的像显示在焦平面上,焦平面上的辐射则用辐射接收器接收,常用的辐射接收器有:乳胶、正比计数器和Χ射线图像转换器等。

γ射线望远镜

γ射线望远镜是用于观测天体的γ射线辐射的仪器。γ射线天文观测只能通过高空气球或人造卫星搭载的仪器进行。1991年,美国的康普顿空间天文台(CGRO)在地球轨道上进行了Y波段的首次巡天观测,取得了许多重大科学成果。

哈勃太空望远镜

哈勃望远镜是人类第一座太空望远镜,用以探索宇宙深处的细微景象。哈勃太空望远镜于1990年发射升空,成为绕行地球轨道的无人天文台。天文学家遥控操作哈勃望远镜,利用感光侦测器取代人工观察,同时利用电子相机来记录宇宙的细微面貌。

哈勃的工作原理

哈勃太空望远镜的核心是一个反射望远镜,与地面上的望远镜相似。但它在太空运作,没有额外的电力、旋转装置和连接控制电脑的缆线,因此哈勃太空望远镜所携带的仪器几乎都是人造卫星的组件:有提供动力的太阳能板、用来指向的反作用轮、用来与地球通讯的无线电天线等,

哈勃太空望远镜的工作

1990年,哈勃太空望远镜升空。1992年,哈勃太空望远镜于M87星系发现巨大黑洞存在的证据。1994年,哈勃太空望远镜记录了“苏梅克一列维”9号彗星撞击木星的情形。1995年,哈勃太空望远镜拍摄到了鹰星云的恒星诞生。1997年,哈勃太空望远镜安装了红外线相机。稍后核对了探路者太空探测船登陆火星的地点,并监测了火星的沙尘暴。

地面控制

哈勃太空望远镜的任务管制,是由美国太空总署位于马里兰州的高达太空飞行中心负责,所有进出哈勃太空望远镜的信号都要经过这个中心,工程师会随时监控太空望远镜的状况。哈勃天文学家的工作地点在巴尔的摩的太空望远镜科学研究所附近,负责管理望远镜的观测计划。

维修任务

哈勃太空望远镜和其他天文仪器一样,也需要定期维修保养。太空工作人员会为它替换电脑与磁带记录器等设备,安装新型光学及红外辐射的相机、侦测器来增进望远镜的功能。1993年,望远镜进行了第一次维修任务,“奋进”号上的太空工作人员安装了一个仪器来修正其主镜的缺陷,让哈勃太空望远镜的视野更清晰。

哈勃的优势

利用地球表面的望远镜观察宇宙,必须穿过大气层。然而大气层对观测有阻碍作用,来自恒星和星系的光线受到大气层的影响会发生变动和扭曲,所以地面上的望远镜很难观测到它们的真实面貌。哈勃太空望远镜位于大气层上方,不受大气层的影响,所以可以清晰地观测宇宙。

红外线天文学

人们应用红外线的特性,制造了红外线望远镜。天文学家利用红外线望远镜,可以把普通望远镜看不到的宇宙面貌展现在世人眼前,从而将天文观测拓展到了更宽广的空间。

红外线波段

红外线位于可见光谱的红端之外。红外线比可见光涵盖更宽广的电磁波谱,范围是从7000埃到0.01厘米。天文学家将红外线分为四个波段:近红外线、中红外线,远红外线和次厘米波。在地球大气之内观测红外辐射十分困难,因为二氧化碳和水会吸收红外线。

红外线观测

在地球大气之上,欧洲红外线太空观测卫星侦测到了来自星系互撞、恒星温床和星际云的光芒。为了将热度干扰降到最低,望远镜被密封起来,冷却到-270℃。三年后,如果冷却剂消耗完毕,红外线太空观测卫星必须停止观测。

红外线大事记

1800年,赫歇尔发现,温度计放在太阳光谱的红端之外有热的显示,因此他将这种不可见的辐射称为红外线。红外线天文卫星于1983年发射升空,已发现了25万个宇宙红外线发射源。1994年,当“苏梅克一列维”9号彗星撞击木星时红外线望远镜发现了3000千米的超热柱。1998年,红外线太空观测卫星在太空中发现了和地球上的水相似的物质。

平流层红外线天文台

为了摆脱地球大气对红外辐射的吸收,并避免大气本身在红外波段的强烈噪音,高空和大气外的红外观测具有特殊的重要性。越来越多的红外天文望远镜被安装在高空飞机、气球、火箭或宇宙飞行器上从事观测。平流层红外线天文台就像是一架装载有红外线望远镜的波音客机,避开了会吸收多数红外线的低层大气。这项装置比起卫星来,成本低廉且具有弹性,而且还可以携带较大的望远镜。

红外线望远镜

红外线是太阳光的一个组成部分,它是一种电磁波,具有一定的波长和频率,并以极高的速度在空间中传播,速度约为30万千米/秒。红外线望远镜和一般的光学望远镜原理相近。实际上,最新的大型发射望远镜是同时针对红外线和可见光来设计的。但是红外线相机必须有冷却系统,才不会让相机本身的热量掩盖来自太空的微弱的红外线。

紫外线天文学

天文学家利用紫外线追踪比太阳温度高很多倍的炙热恒星,因为恒星的温度大都超过了1万摄氏度,发出的光主要是紫外线。另外,紫外线还可以用来显示恒星间炙热而不可见的气体云。不过,地球大气中的臭氧层使紫外线的观测显得较为困难。

紫外线波段

紫外线是电磁波谱中波长在0.01~0.40微米范围的电磁波。紫外辐射的波长包括了从可见光的紫色端往下到Χ光的起点,而波长介于100~910埃的波段又称为远紫外线。

能吸收紫外线的物质

太空中有许多原子会吸收紫外辐射。氢是太空中最常见的元素,吸收远紫外线的能力极佳,它如同浓雾一般掩盖住宇宙深处的绝大部分。在太阳系中,土星作为第二大行星,几乎全部由氢气构成。它的表面看似平静,实际上在它的大气层上部却笼罩着大片氢雾。

紫外线大事记

1972年,“阿波罗”16号的宇航员在月球上设立了一处紫外线观测站,负责观测地球与恒星。1975年,“阿波罗一联合”号在完成太空任务时发现了来自太空的远紫外线。1987年,国际紫外线探测卫星感测到了超新星1987A1喷出的辐射精确定位超新星的距离,也因此得出其所在星系——大麦哲伦云的位置。1990年,伦琴卫星发现了1003个以上的极热恒星发出的远紫外线。

太阳紫外望远镜

太阳紫外望远镜是探测太阳紫外线的光学装置。它分为两类:一类是正入射太阳分光光度计,它能够在300~1400埃的范围内取得太阳单色像。第二类是太阳远紫外掠射望远镜,它只让171~630埃波段的辐射通过。

紫外线观测

M94星系中有为数众多的年轻恒星。但如果从光学望远镜里观测,只能看见闪亮的中央亮点。由太空号紫外线观测卫星拍摄的紫外线影像,则显示出完全不同的构造:中央亮点不明显,但有一道巨大的环由1000万年内形成的年轻恒星组成。

太阳大气中的紫外线

太阳的远紫外线影像显示出,在一个黑色球体外有一层薄而不均匀的气体,不同的颜色编码表示不同的亮度。以可见光所见的太阳表面温度为5500℃,不足以发出远紫外线,所以呈现为黑色。而在太阳表面上方的色球层,气体温度高达10万℃,所以发出了紫外线。

Χ光天文学

Χ光的波长极短,它是高能量的电磁辐射,由温度超过100万摄氏度的物体发出,这些物体是宇宙的热点。太阳以及和太阳相似的恒星只会发出微弱的Χ光,超新星残骸和脉冲星、黑洞附近的气体温度可以达到1亿摄氏度,是极为强大的Χ光光源。

Χ光

Χ光是高能电磁辐射,其波长介于0.1埃到100埃之间,比可见光短得多,最短的Χ光携带的能量最多。Χ光在地球上具有很强的穿透力,医生利用它来拍摄人体内部。不过地球的高层大气吸收了来自太空的所有Χ光,因此Χ光侦测器必须用火箭或卫星装载,到达地球大气之外,才能捕捉到Χ光的存在。

侦测Χ光

天文学家在Χ光望远镜的焦点放置两种侦测器来侦测Χ光。一种是电荷耦合元件,它是用在许多光学望远镜上的电子侦测器,其功能只是记录Χ光打击的数量。另一种比例计算器是经过改良的计算器,原本用在地表侦测辐射,现在则从地表移到天上,产生对应Χ光的彩色影像。

Χ光大事记

1949年,科学家首次发现来自太阳的Χ光,1962年,火箭运载的Χ光侦测器发现太阳系之外的第一个Χ光源:天蝎座Χ-1。1971年,自由卫星发现从天鹅座Χ-1发出的Χ光,由此找到了黑洞存在的证据。1978年,爱因斯坦观测卫星于1978年发射升空,发现类星体和许多年轻的恒星发出Χ光。

爱因斯坦观测卫星

Χ光线和光波、声波一样,是一种看不见的能量波。它的能量很强,可以像光穿过玻璃一样穿过物体。第一座配备掠入射镜的大型Χ光望远镜——爱因斯坦观测卫星,于1978年发射升空。迄今为止,它已经观测了超过5000个Χ光源。

Χ光望远镜

Χ光很难聚焦,因为会被传统的曲面反射镜吸收。它只有在极低的角度撞击金属表面的时候才会反射,就像子弹擦过墙壁形成弹跳一般。Χ光望远镜是利用高度打磨的金属锥形圆筒来聚焦的,称为掠入射镜。美国最近成功测试了一具小型Χ光望远镜,它可以观测到太阳表面的物体。研究人员说,根据此设计建造的望远镜将比人类现在拥有的设备强得多。人类可以用它观测到其他遥远星系中黑洞吞噬物质的情景。

Χ光望远镜观测超新星爆炸

约在1.1万年前,船帆座产生了超新星爆炸,这次爆炸距离地球1500光年。伦琴卫星上装载的Χ光望远镜显示此处的气体为8×10(上标6)℃,这是Χ光望远镜观测超新星爆炸的典型例子。

同类推荐
  • 海水为什么不再蓝

    海水为什么不再蓝

    海洋,是地球生命的母亲,她创造了生命,哺育了生命。地球表面70%是海洋,从海面到几千米深的海底,生活着并不为我们所熟悉的各种生物。
  • 开阔眼界的历史故事

    开阔眼界的历史故事

    五千年的沧桑,五千年的文明,中华大地从荒芜走向繁华,从野蛮走向文明,中华五千年的历史,在这里凝结成一个个智慧与愚昧、生与死、盛与衰的故事。让我们静静地向你诉说吧。
  • 环境中有害物质知多少

    环境中有害物质知多少

    人类生存环境包括自然环境和社会环境,它包容了人类以外的自然界中的一切事物。自然环境是人类生存的物质基础,社会环境是人类生存的精神基础。社会环境是在长期的自然环境中逐渐形成的,影响着人类的行为、思维、想像、风俗习惯、情绪、道德观念、法律意识等。
  • 电力知识

    电力知识

    什么叫电路?电路就是电流流通的路径。它是由电源、负载(用电设备)、连接导线以及控制电器等组成。电源:是产生电能的设备,它的作用是将其他形式的能量(如化学能、热能、机械能、原子能等)转变成电能,并向用电设备供给能量。负载:是各种用电设备。它的作用是将电能转变为其他形式的能量。连接导线:它把电源和负载联成一个闭合通路,起着传输和分配电能的作用。控制电器:其作用是执行控制任务和保护电器设备。
  • 改变历史的科学发明·实验·预言

    改变历史的科学发明·实验·预言

    本书所记录的是自人类诞生至今,人类进步与文明发展的历程,记载了科学史上的重大发明事件、重要发明人物以及他们的突出成就。在这里有:工业生产大力神——蒸汽机的发明故事、还原洁白无瑕的天使——漂白剂的发明故事、高楼大厦的交通车——电梯的发明故事、可游动的炸弹——鱼雷的发明故事、掌握冷暖的魔棒——温度计的发明故事。一部近代科学史,在某种意义上来说,也是一部实验科学史。实验科学最早始于培根。他通过实验方法,扩大了科学王国的领域,开创了近代实验科学的先河。
热门推荐
  • 重生之都市潜龙

    重生之都市潜龙

    楚氏家族百年不出其一的天才,被自己最信任兄弟谋害,重生在了一个默默无闻的普通大学生身上,从此,他以普通人的身份,展开了自己全新的人生,然而,他真的能如愿过上他想要的人生么……
  • 问三生

    问三生

    『暹罗猫.club』是什么在汹涌?是什么在呼喊?是你吗?她,一个孤儿,曾经沦为乞丐,却在偶然下命运发生了改变。修炼,变强,这不是她的目的,这是她复仇的途径,她的悲惨过去,要由他们来埋单。可暗中潜藏的,究竟是什么?一个比一个大的局呈现在她面前,哪怕她不愿意,也要将她拖入泥淖。那埋于历史中的血泪,英雄的悲歌,将会拉她遁入轮回,去寻找一切答案。读者群:486056367快来吧快来吧!快来和我讨论剧情。
  • 触目惊心:交通事故灾害的防范自救

    触目惊心:交通事故灾害的防范自救

    人类文明史的进程,是一个与各种灾害相抗衡、与大自然相适应的艰难历程。随着经济与社会的不断发展,社会财富快速积累,人口相对集中,各种自然灾害、意外事故等对人类的生存环境和生命安全构成的威胁越来越严重。尤其是近些年来,地震、洪水、台风、滑坡、泥石流等自然灾害,以及各种突发性疫情、火灾、爆炸、交通、卫生、恐怖袭击等伤害事故频频发生。这些“潜伏”在人生道路上的种种危险因素,不仅会造成巨大的经济损失,更为严重的是会造成人员伤亡,给社会和家庭带来不幸。这些事件看起来似乎离我们很遥远,但事实上,每个人都处于一定的安全风险中,而且谁也无法预料自己在何时何地会遇到何种灾难。
  • 冷情魔女狩猎曲

    冷情魔女狩猎曲

    冰冷的雾气,徒步前行布满荆棘与泥泞。回忆的齿轮在耳边惊扰,现实的残酷在身边叫嚣。但是魔女当道,谁能阻了?那份失算的爱情,让轩柔嫣不得不蜷缩身体竖起尖刺保护自己,可谁知再次遇见这一辈子都不想相遇的人。抛开过去,游戏重新开始,过程由她掌控,结局由她改写,命运由她主宰。精彩只为挑衅者存在,绚烂只为寻事者绽开。她的嘴角微微上扬一抹似有若无的弧度,却是光芒毕露的璀璨;轻挑眉梢,若隐若现的恣肆蔓延着戏虐。魔女的舞台,必然光芒万丈!
  • 最受你喜爱的友情故事(智慧背囊16本)

    最受你喜爱的友情故事(智慧背囊16本)

    关于友情,古诗说:“海内存知己,天涯若比邻”。哲人说:“世界上没有比友谊更美好,更令人愉快的东西了。没有友谊,世界仿佛失去了太阳。”人的一生中,无论是童年、少年、成年,哪一个阶段都离不开友情。友情,是更雨季的伞,严冬的炭,它以不求回报的热量,慢慢温暖我们的心灵。本书汇集了几百个友情故事,以友情告白来进行点拨,使广大读者在故事中体味友情,回忆友情,以一颗关怀的心去面对身边的人与事,让友谊之花处处开放,使人类的大家庭更加和谐、美好。
  • 一生要赚多少

    一生要赚多少

    人的一生并不是只需要赚钱,人的一生需要赚的东西很多,每个人都应该从年轻的时候就开始打算计划,在时间中赚经验,在危机中赚转机,在行动中赚成果,在平和中赚快乐。这一切,都是人生中必不可少的一部分,都属于人生财富的一部分,需要你辛勤努力才能赚到的。本书从人生经验、危机变通、平和心态等几个方面入手,让读者可以理智学习,赚取人生必须的东西。
  • 离落散尽

    离落散尽

    他突然像是看到了什么,他看着那封我留下来的信。拿着那信,手有些颤抖,认真,心碎地看着:景瑞,对不起。我配不上你的爱,唉,我走了,就不会再回来了。你会快乐的,但,你的快乐不是我。我就像那林间的鸟儿,我要的是自由,即使再大的笼子,那也是禁锢。被你爱很幸福也很累,因为我还不够爱你。那盏我与你在“缘”求得的青灯我已点燃,就让这一切如同这盏青灯一样消失殆尽吧,对与错我已不想再分,我只想就此远离喧嚣,回到属于我的那一片乐土,你可要依旧做一个好皇帝啊,为了你的子民;为了,你的皇后。夏日已尽,秋日将残,叶已落,花已凋,我与你,不复见......——洛锦葵字之间
  • 作者代理系统

    作者代理系统

    最强的金手指是什么?变态体质?神人附体?显赫家世?还是喷死人不偿命的无敌口遁?不不不,都不是,是作者代理系统!有了作者代理系统,你就是这个世界的神!要追女孩子?爱情光环开启!要小弟?王霸光环开启!要暴扁对手,踩翻仇敌?无敌光环开启!如果你还不爽,OK,直接提笔修改剧情!汪大垂,一个三流写手,意外来到自己创作的小说世界,一无是处的他幸好手头还有作者代理系统……且看三流写手如何在自己的世界,运用作者代理系统,创造出一个不一样的结局!“我的小说我做主!”——汪大垂如是说。
  • 王子爱调皮女

    王子爱调皮女

    喜欢王子的敲QQ:2394196439~~~他有时自恋霸道,她有时刁钻可爱,当自恋帅哥碰上刁钻女孩,会有什么事情发生?谁说人长得帅就是个错?谁说女孩不花痴!他就要证明他长得帅不是个错!她也花痴!她也不信邪了!她就要跟他斗下去,看谁比谁厉害!“怎么样,是不是喜欢上我了?”“我就是随便拉个大街上的男人,也不会喜欢你!”等等。她怎么出国了?詪詪。看着吧!等你回来了!有你好受的!小样儿~
  • 降临之诸神黄昏

    降临之诸神黄昏

    一个万年前英勇的种族,一段传奇而又真实的故事,穿越万年的时光,完成守护的使命,他们是谁?一个探险家在一处遗迹内捡到了一个神秘孩童,他究竟肩负着怎样的责任?一艘高科技的未知战舰核心创造的一款史诗般的虚拟网游,虚拟世界与现实世界将会擦出怎样的火花?这其中又有怎样的关联?双剑王者的诞生,是灭亡,是生存。