登陆注册
13113300000005

第5章 核酸的结构与功能(2)

4.真核生物的不均一核RNA是指( )

A.核内转录的初始RNA称为不均一核RNA

B.携带蛋白质合成信息的初始转录的RNA

C.hnRNA中包括内含子

D.AUG上游是5′非编码区

E.UAA下游是3′非编码区

5.tRNA分子是( )

A.细胞内相对分子质量较小的一类RNA

B.含有稀有碱基最多的一类RNA

C.双链RNA,但有局部的单链

D.反密码环上的反密码子与mRNA上的密码子配对

E.5′-端是连接氨基酸的部位

6.rRNA分子是( )

A.细胞内含量最多的RNA

B.S是大分子物质在超速离心时的沉降系数

C.原核生物有5S、16S和23S三种

D.真核生物有5S、 5.8S、18S和28S四种

E.所构成的大、小亚基中各有多种蛋白质

7.核小体是指( )

A.原核生物的细胞核

B.真核生物的细胞核

C.由DNA和蛋白质组成

D.组蛋白包括H2A、H2B、H3、H4各两分子和一分子H1

E.核心颗粒之间的连接区由DNA和H1组蛋白组成

8.关于核酸分子杂交叙述正确的是( )

A.DNA变性的方法常用加热

B.相同来源的核酸才能通过变性而杂交

C.不同来源的核酸复性时,存在全部或部分碱基互补就可杂交

D.杂交可以发生在DNA‐DNA、RNA‐DNA和RNA‐RNA之间

E.把待测DNA标记成探针进行杂交

9.DNA水解得到的产物包括( )

A.磷酸 B.核糖 C.腺嘌呤、鸟嘌呤

D.胞嘧啶、尿嘧啶 E.胞嘧啶、胸腺嘧啶

10.下列关于核酸的叙述中,正确的是( )

A.碱基配对发生在嘧啶碱基与嘌呤碱基之间

B.鸟嘌呤与胞嘧啶之间的联系是由两对氢键形成的

C.DNA的两条多核苷酸链方向相反,一条为3′-→5′-,另一条为5′-→3′

D.DNA双螺旋链中,氢键连接的碱基对形成一种近似平面的结构

E.DNA的双螺旋处于一种动态变化中

11.有关DNA变性的叙述正确的是( )

A.磷酸二酯键断裂 B.DNA变性时糖苷键断裂

C.变性温度的最高点称为Tm D.A260增加

E.双链间的氢键断裂

12.在同一真核细胞内哪些情况是存在的( )

A.在过剩RNA存在的情况下,所有DNA都能与RNA杂交

B.在过剩DNA存在的情况下,所有RNA都能与DNA杂交

C.一个细胞内的RNA和DNA有相同的核苷酸比例

D.所有RNA都是从DNA上转录下来的

E.不同的RNA表达量不同

13.DNA分子中G+C含量越高( )

A.氢键破坏所需要的温度越高 B.解链越容易

C.信息含量越丰富 D.50%复性时需要的温度越高

E.50%变性时需要的温度越高

14.维持DNA分子双螺旋结构稳定的作用力包括( )

A.碱基间的氢键 B.磷酸二酯键

C.碱基堆积力 D.磷酸残基间的离子键

E.以上都是

15.B‐DNA双螺旋结构特点包括( )

A.DNA是由反向平行的两条DNA单链构成

B.DNA双螺旋结构是右手螺旋

C.碱基堆积力和氢键是维持DNA双螺旋稳定的主要作用力

D.DNA双链间的碱基形成互补碱基对,其中A和U、G和C配对

E.碱基对平面与双螺旋结构的螺旋轴垂直

16.细胞中DNA存在于( )

A.高尔基体 B.内质网 C.线粒体

D.叶绿体 E.细胞核

17.DNA和RNA分子的区别是( )

A.碱基不同 B.戊糖不同 C.在细胞内位置不同

D.功能不同 E.空间结构不同

18.变性DNA复性过程包括以下哪些反应( )

A.氢键的形成 B.核苷键的形成

C.磷酯键的形成 D.碱基对间堆积力的形成

E.共价键的形成

19.在熔解温度时,双股DNA发生哪些变化( )

A.双股螺旋完全解开 B.双股螺旋50%解开

C.在260nm处的吸光度增加 D.碱基对间氢键部分断裂

E.所有的G‐C对消失

20.蛋白质变性和DNA变性的共同特点是( )

A.生物学活性丧失 B.易恢复天然状态 C.氢键断裂

D.结构松散 E.形成超螺旋结构

三、名词解释

1.核酸的一级结构

2.不均一核RNA

3.DNA的变性

4.DNA的增色效应

5.融解温度

6.DNA的复性

7.杂交

四、简答题

1.简述DNA和RNA的不同。

2.简述DNA双螺旋结构的要点。

3.什么是DNA的解链温度?影响其大小的因素有哪些?

【科学素养读物】

染色体遗传学的奠基人——摩尔根

1866年,即孟德尔发表那篇重要的遗传学论文的这一年,美国遗传学家托马斯·摩尔根(T.H.Morgan,1866-1945)出生于美国肯塔基州的莱克星顿,他是继孟德尔之后公认的国际遗传学第二代“主帅”。从肯塔基州立大学毕业后,摩尔根考入霍普金斯大学,并在那里取得了博士学位。在那之后的十多年里,摩尔根主要从事实验胚胎学的研究,直到孟德尔的遗传学说被人们重新发现,摩尔根才逐渐将研究方向转到遗传学领域,试图通过实验来验证达尔文关于“自然选择”的理论。

1902年12月和1903年1月,美国哥伦比亚大学的研究生萨顿发表了两篇论文,提出了着名的“萨顿假说”:染色体的行为与遗传性状的行为完全平行。但是,这一假说遭到当时许多遗传学家的反对。当时国际遗传学的“主帅”贝特森就“坚决反对把遗传因子与任何物质实体联系起来”。创造“基因”一词的约翰逊则明确反对“基因是物质的、具有形态的结构”。当时还是胚胎实验学者的摩尔根也是其中一员,他宣称“绝不接受任何没有实验基础的结论”。虽然萨顿提出的各种细胞学现象都是实验观察的结果,但没有任何实验证据能够把这些实验现象与孟德尔遗传理论联系起来。然而,通过实验证实“萨顿假说”的恰恰是当初强烈反对这个假说的摩尔根。

摩尔根由一位对孟德尔遗传理论持怀疑态度的实验胚胎学家转变为国际遗传学第二代领军人物与后来被称为细胞遗传学圣地的“蝇室”有决定性的关系。“蝇室”的创建有些偶然,摩尔根对荷兰植物学家德弗里关于突变与进化的研究很有兴趣,建议他的研究生佩恩通过实验来研究拉马克的“用进废退学说”。佩恩于是用香蕉将果蝇引入暗室进行传代,观察果蝇会不会因为黑暗而产生没有眼睛的后代。虽然佩恩的实验结果是第69代羽化的果蝇也没有退化眼睛,但却使摩尔根发现果蝇是一种极好的实验材料。从此,摩尔根所领导的实验室便被戏称为“蝇室”。最初的蝇室位于哥伦比亚大学斯赫梅霍楼613室,这是一间仅有34.1平方米的小房间。遗传学历史上着名的“摩尔根三弟子”:斯特蒂文特、布里吉斯和穆勒先后于1909年和1912年加入蝇室,成为蝇室研究小组的成员。许多着名的遗传学家如杜布赞斯基、比德尔、麦克林托克、德尔布吕克、莫诺等,以及我国老一辈遗传学家,如陈桢、李汝祺、谈家桢等都曾在蝇室学习、工作或访问过。

1910年5月,摩尔根的一名学生偶然在蝇室的大群野生红眼果蝇中发现了一只白眼雄性果蝇。摩尔根使这只科学史上着名的昆虫与其他野生型红眼雌性果蝇交配。结果是:第一代果蝇无论雌雄全部是红眼型,说明白眼相对于红眼是隐性遗传;第一代果蝇相互交配所得到的第二代果蝇为:红眼型3470只,白眼型782只,考虑到白眼型果蝇死亡率较高等因素,可以认为基本上接近于3∶1的孟德尔比数;不同之处在于:白眼型果蝇全部都是雄性,具体来说是第二代果蝇中红眼型雌性2459只、红眼雄性1011只、白眼雄性782只。通过对白眼雄性果蝇后代眼色表型的遗传学分析,摩尔根在1910年7月的《科学》杂志上发表了《果蝇的限制性遗传》一文:第一次把一个具体的基因(白眼基因)定位于一个特定的染色体(X染色体)上,从而为遗传的染色体理论提供了第一个重要的实验证据,开辟了一条遗传学和细胞学紧密结合的研究道路。

在发现那只白眼雄性果蝇之后,蝇室不断有新的突变体被发现,到1910年底已经达到15种之多。与此同时,摩尔根的遗传学研究也不断深入,研究成果不断涌现。摩尔根通过实验证明控制性连锁遗传性状发育的基因不仅为性连锁,而且彼此之间也是连锁的;不表现为限性(性连锁)遗传的性状,其因子(基因)与限性诸因子(性连锁基因)之间都没有连锁现象,而表现为自由组合。1911年9月,摩尔根在《科学》杂志上发表了被誉为他第二篇重要的论文《孟德尔遗传中的随机分离与互引》,从而在机制上解释了遗传连锁现象。1911年,摩尔根还发现不表现为性连锁的黑体基因与残翅基因是互相连锁的,并且从中发现了“完全连锁”与“不完全连锁”。其后不久,摩尔根又发现不表现为性连锁的乌黑体基因和桃色基因是互相连锁的,但都不与黑体基因和残翅基因连锁,从而提出了“连锁群”的概念。

于是,在1911年这个遗传学历史上重要的年份,摩尔根通过“蝇室”的实验,先后提出了被称为遗传学第三定律的“连锁和交换律”、染色体是基因的物质载体、基因在染色体上呈线性排列、交换率能表示基因在染色体上的相对位置等染色体遗传学说的基本思想。为了纪念摩尔根以及他的蝇室成员创建染色体遗传学说,英国遗传学家霍尔丹在1919年建议将连锁图的图距单位称为“厘摩(centim or gan,cM)”,1cM相当于1%的交换率。1926年,摩尔根出版了集染色体遗传学之大成的名着《基因论》(The Theory of the Gene),系统地阐述了遗传学在细胞和染色体水平上的基因理论,极大地丰富和发展了孟德尔学说,使遗传学获得了前所未有的大发展。为了表彰在遗传学研究中取得的巨大成就,摩尔根在1933年被授予诺贝尔生理学或医学奖。

(李春洋)

同类推荐
  • 科技探秘

    科技探秘

    《巅峰阅读文库·我的第一本探索书
  • 别惊动鸟儿(野生灵三部曲)

    别惊动鸟儿(野生灵三部曲)

    野生灵系列多是关于野生动物的记录和描述,这是作者戴江南在与自然万物的耳鬓厮磨间生出的大欢娱大忧伤,她带着人们徜徉在自然之中,在阿拉套山的悬崖旁观察金雕,在青格里河畔看蝴蝶,在天鹅湖畔驻足,在艾比湖畔与迁徙的鸟儿作别……她将一切自然生灵视若亲朋,以细腻亲和的笔触写下了一部当代自然传奇。同时,本系列作品对普及科学知识、宣扬自然美均有较高的意义和价值。
  • 在科技馆听讲座

    在科技馆听讲座

    本书将我国部分专家、学者在山西省科学技术馆创办的“星期日知识讲座”公益课堂上的讲演稿编辑整理汇集在一起。内容包括:山西历史、文物保护、民俗文化、晋商、家庭教育、儒家文化与传统教育、傅山研究、个人激励与自我成才、防震减灾、环境保护等等。
  • 野马:重返卡拉麦里(戈壁女孩手记)

    野马:重返卡拉麦里(戈壁女孩手记)

    这是作者十余年来在新疆野马繁殖中心亲历的养马故事,这是作者30多万字日记及观察记录整理而成的曲折心路和野马家族的悲欢离合,书中写的都是关于野马非常动人的故事,笔触细腻,在书中,几乎每一匹野马都有名字:“秀秀”、“黑豹”、“小浪荡”……这个家族有悲欢离合,也有生死之恋,其中有不少片断是对野马感情纠葛的人性化的呈现。让我们一同来倾听这荒原野马的动人故事,体味戈壁女孩的内心情感,阅读这潜心原创的生态文学!
  • 风雨雷电与气象学(新编科技知识全书)

    风雨雷电与气象学(新编科技知识全书)

    面对浩瀚广阔的科普知识领域,编者将科普类的内容归纳总结,精心编纂了一套科普类图书,使读者能够更全面、更深入的了解科普知识,以便解开心中的种种谜团。阅读本套图书,犹如聆听智者的教诲,让读者在轻松之余获得更加全面深刻的理论教育,使自己的思想更严谨,更无懈可击。相信每一个看过这套书的读者都会为之受益。
热门推荐
  • Dota风云传

    Dota风云传

    罗琪辉,一名普通的学生,考入了一所普通的大学,原本以为他的人生就会这么平淡地持续下去,直到他接触到了一款名为Dota的游戏。
  • 重回20岁,boss的专宠

    重回20岁,boss的专宠

    活了一世,倾尽一生来报复这个害死哥哥的男人,结果非但没有报得了仇,倒是把自己搭了进去。好在上帝给了她一次重生的机会,回到了哥哥被害前,用尽浑身解数,解救哥哥。不料,这一世还是掉入了“狼口”。前世,她用尽浑身解数,只为接近他,各种卖萌,装乖。今生,她冷若冰霜,对帅气多金的他不屑一顾。想要成为他枕边人的女人数不胜数,可是唯独对她情有独钟。恨不得把绳子把她拴住,好让她一辈子都逃离不了他手掌心。
  • 故事会(2017年5月上)

    故事会(2017年5月上)

    《故事会》是中国最通俗的民间文学小本杂志,是中国的老牌刊物之一。先后获得两届中国期刊的最高奖——国家期刊奖。1998年,它在世界综合类期刊中发行量排名第5。从1984年开始,《故事会》由双月刊改为月刊,2003年11月份开始试行半月刊,2007年正式改为半月刊。现分为红、绿两版,其中红版为上半月刊,绿版为下半月刊。
  • 网王之轻笑如风

    网王之轻笑如风

    风,是最轻柔的存在,上天赐予一个人新的开始,那么就要把握好机会,让自己活得更好更优秀!本文主幸村,其余的不喜勿入。HE无虐,感情应该算慢热。本文经过大修,与原先会有很大不同,老读者请注意了。
  • 黑神

    黑神

    暂无简介,暂无简介,暂无简介,暂无简介,暂无简介,暂无简介,
  • 仙出没

    仙出没

    这里有仙出没。
  • 清江一梦遥

    清江一梦遥

    一场阴谋带来几分离愁,爱与不爱又怎能控制。失音、被当做祭品以及后来所有的事难道就是因为天生的阴气?林梦语扮了那么久的柔弱,似乎看透一切,尽在掌握,但一件件脱离的事件却让她越来越看不清……夫君的身份,自己的亲人,真实的妹妹到底真相是怎样的?
  • 绝色侠妃:爱妃,你有毒!

    绝色侠妃:爱妃,你有毒!

    她先天不足,不能练武,所以只跟师傅学了轻功和内功。在得知师傅的往日伤心事之后,她决心为师傅“报仇解恨”,所以她费尽心机要找到一颗幕国皇帝丢失的夜明珠皇后,以此来要挟“仇人”的弟子幕国九皇子幕南君绍,然而命运多变,或许他们注定无法成为仇人!
  • 苍天之路

    苍天之路

    苍天之路,不为成神,只为一手,遮天之穹!
  • 好久不见

    好久不见

    封夏最初遇到司空景时,只是一个刚进娱乐圈、恰满二十岁的年轻女孩,而司空景却已经是声名显赫、红得发紫的天王巨星。虽然这样的差异,使得这份感情比起常人分外艰难——媒体的追踪、对公司的隐瞒、身边的种种阻碍……也导致了彼此之间的一些误会,但他们还是努力地在保护着这份感情。喜欢一个人时,想要为了他,让自己变得更优秀,能够与他并肩而行……六年后,当她已成为娱乐圈一线天后,她从未有过一刻忘记的爱人终于也从美国归来,携带着同样赤诚忠贞的爱,开始收复失地……