登陆注册
13115600000014

第14章 分子生物学与基因工程导论(1)

分子生物学与基因工程是当今生物科学研究中发展最活跃的学科之一。近年来人们在人类基因组计划、功能基因的克隆与分析、重组DNA技术、分子疫苗开发、基因诊断与治疗等领域中取得了许多令人瞩目的成果,分子生物学和基因工程已不单单成为生物学的基础知识,而且已成为生物科学未来发展的优先研究领域与技术,它决定着整个生命科学研究的发展方向。本章节对分子生物学与基因工程的研究现状与发展趋势进行简要的阐述。

一、分子生物学与基因工程的含义及主要研究内容

分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其他学科广泛交叉与渗透的重要前沿领域。偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。

这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育及代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。

而基因工程是分子生物学的重要内容,也是理论部分的延伸与实践,也叫基因操作、遗传工程,或重组体DNA技术。它是一项将生物的某个基因通过基因载体运送到另一种生物的活性细胞中,并使之无性繁殖(称之为“克隆”)和行使正常功能(称之为“表达”),从而创造生物新品种或新物种的遗传学技术。一般说来,基因工程专指用生物化学的方法,在体外将各种来源的遗传物质(同源的或异源的、原核的或真核的、天然的或人工合成的DNA片段)与载体系统(病毒、细菌质粒或噬菌体)的DNA结合成一个复制子。这样形成的杂合分子可以在复制子所在的宿主生物或细胞中复制,继而通过转化或转染宿主细胞、生长和筛选转化子,无性繁殖使之成为克隆。然后直接利用转化子,或者将克隆的分子自转化子分离后再导入适当的表达体系,使重组基因在细胞内表达,产生特定的基因产物。

根据分子生物学的定义与含义,其研究内容主要包括以下三个方面:(1)核酸的分子生物学:主要研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(molecular genetics)是其主要组成部分。由于20世纪50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(central dogma)是其理论体系的核心。(2)蛋白质的分子生物学:主要研究执行各种生命功能的主要大分子——蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。(3)细胞信号转导的分子生物学:主要研究细胞内、细胞间信息传递的分子基础。构成生物体的每一个细胞的分裂与分化及其他各种功能的完成均依赖于外界环境所赋予的各种指示信号。在这些外源信号的刺激下,细胞可以将这些信号转变为一系列的生物化学变化,例如蛋白质构象的转变、蛋白质分子的磷酸化以及蛋白与蛋白相互作用的变化等,从而使其增殖、分化及分泌状态等发生改变以适应内外环境的需要。信号转导研究的目标是阐明这些变化的分子机理,明确每一种信号转导与传递的途径及参与该途径的所有分子的作用和调节方式以及认识各种途径间的网络控制系统。信号转导机理的研究在理论和技术方面与上述核酸及蛋白质分子有着紧密的联系,是当前分子生物学发展最迅速的领域之一。

二、分子生物学与基因工程的发展历程

根据历史事件及其在分子生物学与基因工程领域中的重要性,分子生物学与基因工程的发展历程可人为地分成以下三个阶段:

(一)准备和酝酿阶段

19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质认识上的重大突破:

1.确定了蛋白质是生命的主要基础物质

19世纪末,Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。在此期间对蛋白质结构的认识也有较大的进步。1902年,EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年,Sanger和Thompson完成了第一个多肽分子——胰岛素A链和B链的氨基酸全序列分析。由于结晶X-射线衍射分析技术的发展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋结构模型。所以在这一阶段对蛋白质一级结构和空间结构都有了认识。

2.确定了生物遗传的物质基础是DNA

虽然1868年Miescher就发现了核素(nuclein),但是在此后的半个多世纪中并未引起重视。20世纪20-30年代已确认自然界有DNA和RNA两类核酸,并阐明了核苷酸的组成。由于当时对核苷酸和碱基的定量分析不够精确,得出DNA中A、G、C、T含量是大致相等的结果,因而曾长期认为DNA结构只是“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的候选分子更多的是考虑蛋白质。40年代以后实验的事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。1944年,Avery等证明了肺炎球菌转化因子是DNA;1952年,Hershey和Chase用DNA35S和32P分别标记T2噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了是遗传物质。在对DNA结构的研究上,1949-1952年Furbery等的X-衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构;1948-1953年,Chargaff等用新的层析和电泳技术分析组成DNA的碱基和核苷酸量,积累了大量的数据,提出了DNA碱基组成A=T、G=C的Chargaff规则,为碱基配对的DNA结构认识打下了基础。

【知识拓展】

英国生物化学家弗雷德·桑格尔(Fred(Frederick)Sanger),1918年8月13日出生,分别获得1958年和1980年诺贝尔化学奖。他是同一领域内两次获奖的第二人,更关键的是,两次获奖理由都可归结为:测序。并且,他是目前唯一在世的两次获得诺贝尔奖的人。

1958:弗雷德·桑格尔发明酶法测定人胰岛素序列,从而确定胰岛素的分子结构,开创了蛋白质测序的领域。

1980:弗雷德·桑格尔、沃尔特·吉尔伯特共同荣获诺贝尔化学奖。他们的贡献在于:分别使用不同的方法测定DNA的序列。Sanger法后来成为主流,并用于人类基因组计划(HGP)的测序。

【知识拓展】

美国化学家莱纳斯·鲍林(Linus Pauling,1901-1994),分别荣获1954年诺贝尔化学奖和1962年诺贝尔和平奖。他是目前为止唯一一个两次单独获得诺贝尔奖的人。

1954:莱纳斯·鲍林独享诺贝尔化学奖。他的贡献在于阐释化学键的本质,并将其应用于解释复杂物质的结构。

1962:莱纳斯·鲍林独享诺贝尔和平奖。他的事迹是,反对核武器实验、核武器扩散、核武器使用。诺贝尔奖委员会评价为:“Linus Carl Pauling,who ever since 1946 has campaigned ceaselessly,not only against nuclear weapons tests,not only against the spread of these armaments,not only against their very use,but against all warfare as a means of solving international conflicts.”

(二)建立和发展阶段

这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。DNA双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出了碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。在此期间的主要进展包括:

1.遗传信息传递中心法则的建立

在发现DNA双螺旋结构的同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年Kornberg首先发现DNA聚合酶;1958年Meselson及Stahl用同位素标记和超速离心分离实验为DNA半保留复制模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。

在研究DNA复制将遗传信息传给子代的同时,提出了RNA在遗传信息传到蛋白质过程中起着中介作用的假说。1958年Weiss及Hurwitz等发现依赖于DNA的RNA聚合酶;1961年Hall和Spiegelman用RNA-DNA杂交证明mRNA与DNA序列互补;逐步阐明了RNA转录合成的机理。

在此同时认识到蛋白质是接受RNA的遗传信息而合成的。50年代初,Zamecnik等在形态学和分离的亚细胞组分实验中已发现微粒体是细胞内蛋白质合成的部位;1957年,Hoagland、Zamecnik及Stephenson等分离出tRNA并对它们在合成蛋白质中转运氨基酸的功能提出了假设;1961年,Brenner及Gross等观察了在蛋白质合成过程中mRNA与核糖体的结合;1965年,Holley首次测出了酵母丙氨酸tRNA的一级结构;特别是在60年代Nirenberg、Ochoa以及Khorana等几组科学家的共同努力下破译了RNA上编码合成蛋白质的遗传密码,随后研究表明这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程。

上述重要发现共同建立了以中心法则为基础的分子遗传学基本理论体系。1970年,Temin和Baltimore又同时从鸡肉瘤病毒颗粒中发现以RNA为模板合成DNA的反转录酶,进一步补充和完善了遗传信息传递的中心法则。

同类推荐
  • 成长故事(影响青少年一生的中华典故)

    成长故事(影响青少年一生的中华典故)

    中华文明源远流长,历史文化典籍中的典故也是数不胜数。本书编者在先秦到晚清的文化典籍中穿梭往来,精选出数千则典故,并对每则典故的出处、故事、含义、用法进行了详解。为了方便读者查阅,根据含义的异同对这些典故进行了分类,使读者用起来方便快捷、得心应手。一书在手,尽览中国语言文化的博大精深。
  • 航空航天科学知识(青少年科普知识阅读手册)

    航空航天科学知识(青少年科普知识阅读手册)

    技术更新,知识爆炸,信息扩张……一系列代表着人类社会巨大进步的词汇,充斥着我们的社会,使每个人都感到在巨大的社会进步面前人类自身的局限。作为人类社会充满生机和活力的群体——青少年朋友,在对现有书本知识学习的基础上,更充满着对一切现代科学技术和信息技术的无限渴望。人类的智慧在我们生存的这个蔚蓝色的星球上正放射出耀眼光芒,同时也带来了一系列不容我们忽视的问题。引导二十一世纪的青少年朋友了解人类最新文明成果,以及由此带来的人类必须面对的问题,将是一件十分必要的工作。
  • 美洲寓言(语文新课标课外必读第八辑)

    美洲寓言(语文新课标课外必读第八辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
  • 心灵体操自助训练(培养学生心灵成长的经典故事)

    心灵体操自助训练(培养学生心灵成长的经典故事)

    在这套丛书里,我们针对青少年的心理特点,专门选择了一些特殊的故事,分别对他们在这一时期将会遭遇的情感问题、生活问题、学习问题、交友问题以及各种心理健康问题,从心理学的角度进行剖析和讲解,并提出了解决问题的方法和措施,以供同学们参考借鉴。
  • 爱国为民的故事(中华典故故事全集)

    爱国为民的故事(中华典故故事全集)

    本套《中华典故故事全集》全部精选我国著名典故故事,并根据具体思想内涵进行相应归类,主要包括《爱国为民的故事》、《军事战争的故事》、《修身立世的故事》、《智慧谋略的故事》、《读书学习的故事》、《品质修养的故事》、《社会世情的故事》、《世事明察的故事》、《心灵情感的故事》和《悟道明理的故事》等十册,书中每个典故都包括诠释、出处和故事等内容,简单明了,短小精悍,具有很强的启迪性、智慧性和内涵性,非常适合青少年用于话题作文的论据,也对青少年的人生成长以及知识增长具有重要的作用,是青少年阅读和收藏的良好版本。
热门推荐
  • 血皇图

    血皇图

    天下风云出我辈,一入江湖岁月催。皇图霸业谈笑中,不胜人生一场醉。提剑跨骑挥鬼雨,白骨如山鸟惊飞。尘世如潮人如水,只叹江湖几人回。洪武十三年,开国元帅徐达的嫡长子徐辉祖从北平带回来了一个私生子,也带回来了一段传奇的开始。这个私生子,就是徐景天,奇妙的时代,别样的精彩!游龙天下间、煮酒点江山,醉卧美人膝,醒掌天下权。群号:207815796
  • 猎魅传说

    猎魅传说

    这就是你送给我最好的礼物,掀起腥风血雨,让我面对死亡、别离、背叛、残忍。可却是你教会我美好、珍惜、坚持、爱情。我最信任的人,到最后我连自己都不相信,我拼了命想保护的人,其实最想至我于死地。我成为利益,成为救世主,成为同类中的眼中钉。一切都是我,最初的开始,最后的结束。从此开始我要我活着的每一天都成为你们的残忍。
  • 为人处世曾国藩,立业成事胡雪岩

    为人处世曾国藩,立业成事胡雪岩

    会做人,得以在职场上纵横捭阖;会做事,得以在事业上扬名立万。曾国藩,胡雪岩,当代人最需要学习的两位古人。看曾国藩如何从一个小山村里走出来,成为清廷倚重的大员;看胡雪岩如何从一个米店小伙计,成为一位受慈禧召见的“红顶商人”。
  • 人活着,不是活给别人看的

    人活着,不是活给别人看的

    大多数人都是草根阶层,我也不例外。无奈媒体的关注基本在于纸醉金迷的最上层,这仿佛在说我们天生就是错误的,我们不应是这世界的主流,只有成为比我们富有的多的那种人,我们才能被这个世界接受。
  • 殇薇

    殇薇

    一个被判为废灵之体的丑八怪,却有着无比高贵的身份。为了心中的强者之梦,她竭力在重重迷雾之中挣扎着。延续了千年的辛秘,关于爱情的诅咒。经历了爱恨离别,她最终走上了反抗命运之路!就算是无解诅咒又能怎样?
  • 百亿骚年

    百亿骚年

    一个身家有百亿的17岁少年被父母赶出来进行磨练,他会有哪些奇遇呢?
  • 追爱亿万小逃妻

    追爱亿万小逃妻

    "闪电惊骇划破夜空,房内气氛诡异。“为什么……要这样对我?我并不认识你啊……”安然紧贴冰冷墙面,眼角泛着泪光。夜皓辰淡淡一笑,周身散发低郁气息,“为什么?不如你来猜一猜?”衣衫撕破,痛如蚀骨毒药,压迫感使人如坠冰窟。安然脸色惨白,瞪大眸子望着夜皓辰,“你……要买我?”夜皓辰饶有兴趣的看着安然,“别说买那么难听,你还没那么值钱。”原以为他只为旧爱报仇生恨,却不想牵扯出上一代的前尘旧恨恩恩怨怨。百转千回,纠缠虐恋。没有硝烟的战场,处处暗流涌动。在爱的角逐中彼此一进一退,本是仇恨报复,却让他们惹火烧身!"
  • 分身有术的海参:动物绝技

    分身有术的海参:动物绝技

    《分身有术的海参--动物绝技》简介:无论是身怀绝技的动物,还是形态各异的植物,抑或是我们生活中见所未见、闻所未闻的神秘生物,它们共同构成一个光怪陆离的生物世界。“图说生物世界”将为你展现生物世界的趣味,描绘生物世界的新奇,揭开生物世界的神秘。人类和动物生活在同一个世界里,或许你对很多动物都不陌生,但是,你知道它们的一些小秘密吗?你知道青蛙为什么长着一张大嘴巴吗?你知道萤火虫为什么会发光吗?你知道猫头鹰为什么会在睡觉的时候睁一只眼闭一只眼吗?总有太多的疑问困扰着我们,让我们百思不得其解。
  • 一错成婚:总裁太难撩

    一错成婚:总裁太难撩

    婚礼上的男人,是一个陌生的男人,是这个城市中大名鼎鼎,年少多金的萧慕辰。这本应该是欧阳佳佳和男友定好结婚的日子,新郎换成了别人……脑海中出现了两张充满嘲笑和不屑的笑脸,她的闺蜜和男友,他们两个原本是她最信任的人,却没想到一直被他们耍弄!一个星期前的一场车祸,让她遇上了现在的结婚对象,豪门子弟萧慕辰……欧阳佳佳是从婚介所里跑出去的,没有跑之前,她还在陪着闺蜜演戏,闺蜜帮她挑选十几个男人的照片,没有一个是她满意的。最后,她终于忍无可忍,演不下去,她毕竟没有闺蜜戏演得好,更没有闺蜜的城府……一个星期之后,欧阳佳佳的婚礼如期举行,这场婚礼也不过是对一个人的承诺。
  • 超能格斗王:神愿云翼传说

    超能格斗王:神愿云翼传说

    总是被人欺凌的少年楚凌云,无意中得到一个来自上帝的愿望,随口许下成为格斗游戏中超级高手的愿望。可惜即使是向上帝许愿,也没有免费的午餐,根据上帝的一贯作风,愿望还是要靠自己努力才能实现……兄长的归来、改变的体质、奇怪的训练,还有来自强者的挑战……