登陆注册
10650000000030

第30章 生理大发现(4)

于是,年轻的费雪就带领一个实验小组,对叶绿素分子的结构进行测定。由于这项工作十分复杂,要一点一点地分离,一次一次地测量,来不得半点浮躁和粗心,因而有些成员沉不住气了,就半途而废,先后退出了实验小组。然而,费雪并不气馁,他几十年如一日,孜孜不倦地坚持实验。他像工人拆卸机器零件那样,把叶绿素一部分一部分提取出来分析、研究,终于发现叶绿素是由四个叫吡咯的小环组成的一个叫卟啉的大环〔吡咯bǐ luò、卟啉pǔ lín〕,大环的中央有一个镁原子。这就好像机器的四个零件组成一个总部件,零件之间用镁做“桥梁”彼此连接起来。正是因为有了它才使“工厂”的动力太阳光能像运输卡车那样一辆辆地通过镁“桥”,送往“车间”,把“机器”发动起来,进行生产。

费雪还发现,植物叶绿素的结构和动物血液中的血红素结构几乎一模一样,只是叶绿素的中心是镁原子,而血红素的中心是铁原子。这个有趣的现象告诉我们:动物和植物有共同的祖先。后来,由于环境和生活方式的改变,促进了生物的进化,才使动植物分家。在这两种重要的色素结构中,只是换上各自需要的不同“桥梁”,履行不同的功能罢了。

费雪在测定叶绿素结构的过程中,光是实验的原料就用了几十吨;每一个实验成果的取得都要通过几百个化学反应,经过几千道关口。他力求采用当时最先进的方法进行实验。有时候,他为了测定一个反应数据,竟要用上几个月的时间。就这样,费雪勤勤恳恳,不知疲倦地奋斗了30年,才把这个号称“头等化学难题”——叶绿素的结构攻下来了。这中间凝结了科学家的多少心血啊!难怪他在1930年接受诺贝尔奖金的时候,激动地掉下了晶莹的泪珠。

化学合成大师

叶绿素的内部结构研究清楚以后,科学家们又集中攻破了关于人工合成叶绿素的新课题。是谁走在前边呢?美国化学家伍德沃德经过几年的苦心钻研,破天荒地合成了叶绿素。

伍德沃德继续费雪的实验,运用现代先进的科学技术,先后合成了四个吡咯小环,然后,像高级焊接师那样,小心翼翼地把四个吡咯环“焊接”在“镁桥”上。这部奇妙的“机器”十分娇嫩,连接每个“零件”和“部件”都必须十分小心,有条不紊,一丝一毫也不能有差错,否则,就得全盘返工。伍德沃德在合成叶绿素的过程中,还发明了许多试剂来保护和检查每一道工序。经过四年的奋战,终于在1960年人工合成了叶绿素。人工合成的叶绿素和从绿叶中提炼出来的叶绿素不但物理、化学性质相同,而且还有同样的生物和光合作用的活性。

伍德沃德被人们称颂为“化学合成大师”。叶绿素的合成和胰岛素、核酸的合成一样,是近代有机物合成的三大成就。

伍德沃德所以能取得辉煌的成就,是和他从小立志做个化学家分不开的。

伍德沃德出生在美国波士顿一个职员的家里。他从小就立志向富兰克林、爱迪生等前辈科学家学习。念小学的时候,他就酷爱化学,常把零用钱节省下来,购买化学药品和简陋的仪器,在家里的地下室,办起一个小小的“实验室”。假日,他就一头钻进实验室,专和试管、烧瓶、药品打交道,沉醉在这个有无穷乐趣的小天地里,甚至往往忘了吃饭。进中学,他就赢得了“小化学家”的浑名。大学一年级时,他在化学方面显示了独特的才能,被当时麻省理工学院的教授称为出类拔萃的化学天才。

40年代,他最先合成了治疗疟疾的特效药奎宁,后来又合成了番木鳖碱,从而崭露头角。50年代,又合成了胆固醇。到了60年代,他成功地人工合成了叶绿素。1965年他荣获了诺贝尔化学奖金。

当时,有人问他成功的秘诀,他郑重地说:“缜密规划,力促其成。”也就是说,在进行研究之前,要认真总结前人的经验,周密部署,订出规划,并且利用一切先进的工具、仪器、方法等等。这句话应该成为科学工作者的座右铭。

从威尔斯塔特提取叶绿素、费雪测定叶绿素结构到伍德沃德巧夺天工地合成叶绿素,经历了半个多世纪,科学家呕心沥血,艰苦奋斗,才逐步揭开“绿色工厂”的秘密,特别是叶绿素合成,为人工模拟绿色植物的光合作用开辟了光辉的前景。

在植物体里,由叶绿体合成叶绿素。合成的步骤和动物血液中的血红素合成很相似。只不过合成叶绿素需要加入一个镁原子。可是,叶绿素的生物合成跟铁也有关系,当培养植物的土壤中缺乏铁的时候,叶绿素就不能合成,叶片上出现“缺铁现象”。如果往叶片发黄的盆花里加入一些硫酸亚铁,叶片就慢慢地恢复绿色了。至于铁在什么步骤以什么形式参与叶绿素合成的,目前还不清楚。

希尔试验

叶绿体在叶片细胞中,只要有太阳光,它就能正常生产。能不能把它从绿叶中搬出来生产呢?

19世纪中期,有许多科学家力图把叶绿体从活细胞中分离出来,看看它能不能继续生产。可是,实验接二连三地失败了。他们发现叶绿体一旦离开活细胞,就不能吸收二氧化碳,也不能放出氧气,光合作用立即停止。于是,有人振振有辞地说:“叶绿体只有在上帝创造的生命体内,才能赐给众生食物。”

年轻的英国科学家希尔,不相信这种宗教胡说。但是,叶绿体从细胞中分离出来以后,到底还能不能继续进行光合作用呢?他决心进一步研究这个问题。

1939年秋天,希尔采集了几十片野芝麻的绿叶,细心地撕去叶脉,把叶子切成碎片,放进研钵中,加上30毫升食盐磷酸盐溶液和少量的石英砂,用力研磨后,用两层纱布滤去残渣。把滤过液装进试管,在小离心机上旋转半分钟,然后除去砂粒和碎叶片。再把剩下的滤过液离心旋转以后,在试管下部沉淀下来的就是叶绿体了。最后,再取5毫升的食盐磷酸盐溶液,把叶绿体倒进去,叶绿体就悬浮在盐溶液中,从而做成了叶绿体悬浮液。

接着,希尔用两只试管,各装进2毫升叶绿体悬浮液,再分别加进去1毫升黄色的草酸铁溶液。然后,把一只试管放在阳光下照射,另一只放在暗箱里。3分钟以后分别取出,放在沸水中加热两分钟,再放进离心机里旋转,使叶绿体沉淀。

取出试管以后,看到照光的溶液变成了桔红色,而暗箱里的那只试管颜色没变。桔红色的溶液是什么呢?原来,阳光照射叶绿体以后,经光合作用放出的氧和草酸铁进行了化学变化,使得黄色的草酸铁变成了桔红色的草酸亚铁;在暗箱里的叶绿体没有进行光合作用,所以试管里的颜色没改变。同时,希尔还测到了在阳光下的那只试管里放出了氧气,不过数量很少。这个轰动世界的“希尔实验”证明:“车间”搬出来以后照常可以生产。

不过,美中不足的是,希尔在提取叶绿体的时候,把叶绿体的外被膜也就是“车间”的“围墙”给破坏了,进行卡尔文循环的酶流了出来,这样就不能和二氧化碳结合了。以后,科学家们细心地用种种方法保护了叶绿体,在试验过程中不使“围墙”破坏。这样搬出来的“车间”,还是能够和二氧化碳进行化学变化的。

希尔把叶绿体从细胞里搬了出来,这在光合作用的研究中起了突破作用。首先是他把细胞给打开了,这对于后来深入地研究光合作用内部反应的各个环节,都起到了开路先锋的作用。

四、一项重大的研究课题

二百多年来,世界上许多科学家为了揭开光合作用的奥秘贡献了毕生的精力。不过,人们对于绿叶的光合作用,现在也只是知道一个粗略的轮廓,许多细节还不很了解。要想更深入地探求光合作用这样一个重要的自然现象的全部奥秘,还需要几代人长期不懈的努力。

光合作用是在一个很精致、很复杂的“工厂”中进行的。各种植物的“绿色工厂”的设备和装置也不完全一样,科学家们正在探索不同植物的“工厂”特点,分析“工厂”中的各种设备,力图抓住其中的关键环节,用遗传学知识提高现有农作物等的光合作用效率;并通过对“绿色工厂”设备的详细解剖和分析,在掌握它的生产原理以后,用现代化学、物理和工程学的知识来仿效它,以便高效率地生产品质最优良的产品。这是多么富有魅力的目标啊!

那么,当前科学家们对于光合作用的研究,正在开展哪些重大的研究课题呢?

变三碳植物为四碳植物

20世纪60年代,美国科学家发现植物可分为三碳植物和四碳植物两类。所谓三碳植物,是指二氧化碳进入绿叶以后,先形成一个含有三个碳原子的化合物,这类植物比如水稻、小麦、大豆、天竺葵等等。而四碳植物,是指二氧化碳进入绿叶以后,先形成一个含有四个碳原子的化合物,这类植物比如甘蔗、玉米、高粱等等。

科学家是怎样发现三碳植物和四碳植物的呢?

60年代初期,美国科学家用天竺葵做实验,发现在光照下,叶片吸进的氧气很多,放出来的二氧化碳也很多,科学家把这种现象叫做光呼吸。天竺葵的光呼吸是比较高的,但是光合作用的效率却很低。

到了60年代中期,他们又发现另一种植物甘蔗的光呼吸很低,甚至几乎没有光呼吸,可是它的光合作用效率却很高。这是怎么回事呢?

经过科学家的进一步研究,发现甘蔗叶片内的维管束部分有皇冠状的细胞组织,这种独特的结构和二氧化碳的结合能力比较强。比如,中午阳光比较强的时候,气孔开得很小、尽管吸进来的二氧化碳含量减少,但是光合作用能够照常进行。而天竺葵、小麦等就不是这样,平时,它们的气孔开得很大,这样就不能适应强光的照射,体内的水分都被蒸发到周围环境中去了,所以一到中午,气孔就关闭,叫做小麦“午睡”,需要等到太阳斜射的时候、叶片再恢复光合作用。

科学家还发现,四碳植物甘蔗进行光合作用的时候,还有一套比较复杂的酶系统和二氧化碳结合。具体讲,有两种酶和二氧化碳结合的很紧密:一种是二磷酸核酮糖羧化酶,另一种是磷酸烯醇丙酮酸羧化酶。这两种酶都能把一丁点儿的二氧化碳尽快地送进“车间”。所以,在同样的条件下,甘蔗光合作用的效率比小麦高。

更有趣的是,那些长期生活在沙漠里的仙人掌,可称是景天科植物中的佼佼者了。白天,沙漠奇热,它惜水如金,紧闭气孔;一到晚上,气孔敞开,由一种酶把二氧化碳先运到细胞的液泡中,暂时贮存起来。等到白天,在强烈的阳光下再“闭门生产”。这时候,二氧化碳再源源不断地从液泡运到“车间”。科学家发现仙人掌负责和二氧化碳结合的酶,同四碳植物的酶一样,都是结合能力很强的酶。二氧化碳进入仙人掌的绿茎以后,也是先形成一个含有四个碳原子的化合物,但是又和甘蔗、玉米等四碳植物不同。甘蔗是在白天进行光合作用,直接利用二氧化碳作原料,不需要在液泡里暂时贮存。

从以上和二氧化碳产生不同变化的植物类型来看,四碳植物的光合作用效率比三碳植物高,所以,世界上许多农业专家、生物学家都力图把三碳植物变成四碳植物。从不同植物具有不同的光呼吸,科学家们得到启示:想办法降低光呼吸作用来提高光合作用效率。但是,做了许多实验都没有成功。经过研究,现在自然界中的四碳植物,大约有一百多种,大多都是起源于热带的植物;其余的基本上是三碳植物。科学家正继续探索三碳植物变成四碳植物的途径。

大约到70年代初期,美国科学家又发现在滨藜科的植物中,既有三碳植物,又有四碳植物。

他们用这两种植物进行杂交实验,也就是让三碳植物和四碳植物进行异花传粉。结果,在后代植株上面,表面看起来像四碳植物,实际上,四碳植物的优点却没有了。分析主要原因是由于三碳植物和四碳植物的内部结构和功能不同。从这个实验说明用杂交的办法目前是不行的。

科学家认为,解决这个问题最有希望的办法是基因移植,也叫做遗传工程,这样才有可能提高低光呼吸植物的光合作用效率。

什么是基因呢?平时,你所看到的植物各种各样,有的高,有的茎细,有的花小,有的果大等等,这些叫做不同的性状,而且这些性状可以遗传下去。是谁控制着生物体中多种多样的性状呢?原来,在细胞核里有许多棒状的染色体,在染色体上面就排列着许许多多基因,一个基因控制着一个性状。因为基因可以一代一代地遗传下去,所以生物的性状也就跟着遗传了。

随着现代生物学的发展,科学家能够运用一种专门的技术给生物细胞做“手术”,把基因从一个生物体的细胞里移植到另一个生物体的细胞里去。这个专门技术叫做遗传工程。如果把四碳植物的遗传基因移植到三碳植物里面,这样,三碳植物也就像四碳植物那样长出先进的“生产设备”,从而大大提高生产效率。如果能做到这一点,“绿色工厂”合成的产品,就可以翻几番,地球上就可以增加多少亿吨的粮食。

开发能源的新途径

目前,全世界每年大约耗费煤炭等能源物资几十亿吨,1979年,美国单石油一项就消耗九亿两千四百万吨之多。如果按这个速度耗费,要不了二百年,地下贮藏的石油、煤等能源就要消耗殆尽。所以,科学家正在千方百计地寻找新能源。

探索光合作用的秘密,是开发能源的理想办法之一。

大家知道,太阳光是用之不尽,取之不竭的能源,水也是最丰富的资源。如果能像“绿色工厂”那样,吸收太阳光来分解水,把水变成氢气和氧气,那该是多么理想的办法!氢气是不污染空气的良好能源,现在一般用电分解水得到它,还要消耗大量的电源。所以,模拟光合作用用光来分解水是重要的方向。

人类有没有办法实现这个理想呢?

这,乍看起来似乎十分困难。因为通常绿色植物利用太阳光分解水总是放出氧气和生成还原态氢,再用还原态氢去还原二氧化碳,生成碳水化合物,而不会放出氢气来。

然而,人们通过长期的观察和研究,也找到一些植物用光分解水以后是能放出氢气的。比如,有一些藻类——绿藻、红藻和蓝绿藻等等,它们身上就有一种特殊的放氢酶。人们把它们放在无氧条件下培养一个时期以后,在光照下就可以产生氢气。虽然这些植物产生氢气的量很少,而且放氢的速度也慢,但它毕竟给人类仿照植物的光合作用来分解水作出了启示。

1973年,美国科学基金会特别拨出一笔经费,成立专门研究小组,研究如何仿照“绿色工厂”分解水制取氢气和氧气的办法。经过努力,果然有所突破。研究小组提出用叶绿体和放氢酶联合作战的方案来光解水。他们从菠菜叶子中提取叶绿体,从梭菌体内提取放氢酶,把它们混在一块,再加进一个能传递电子的化合物——甲基精紫。然后,把它们安置在无氧的环境中,经过太阳光的照射,结果,很快地放出了氢气。

同类推荐
  • 沐阳语丝

    沐阳语丝

    《沐阳语丝》包换小米粒历险记、贪婪的指针、泡泡的世界、一半鸡、小鱼鲮鲮历险记、猫鼠大战、玫瑰花精灵、三国手指、我最喜欢的一棵大树、荷花、假如我是魔法师、蚂蚁世界的非凡旅行等篇章。
  • 凉开水可以养鱼吗:最不起眼的大学问

    凉开水可以养鱼吗:最不起眼的大学问

    《凉水里可以养鱼吗:最不起眼的大学问》对生活中的常见的小问题、小现象加以剖析,深入浅出地讲解其中蕴含的科学道理,让你通过《凉水里可以养鱼吗:最不起眼的大学问》体会到生活窍门和科学知识的无处不在,并进一步被它们的魅力所吸引,让你学会自主发现身边的科学与生活中的学问,变得更加善于学习和思考,更加热爱生活。
  • 自信的树立(优秀人才成长方案)

    自信的树立(优秀人才成长方案)

    此套书撷英采华,精心分类,不但为处于青少年时期的孩子创造了一个欢乐、轻松的成长环境,而且更陶冶了青少年的情操,可以说是一套让青少年全面提高、全面发展的青春励志经典读物。
  • 青少年应该知道的宇宙

    青少年应该知道的宇宙

    本书从宇宙的起源说起,并分别介绍了它的发展历程、运动方式以及它的成员们。
  • 青少年最喜爱的寓言故事

    青少年最喜爱的寓言故事

    本书从浩如烟海的寓言王国里,精心挑选了古今中外脍炙人口的经典寓言,青少年读者可以从中感受智慧的芬芳,体验生活的艺术和想象的魅力。本书旨在让青少年在寓言简短、诙谐、幽默的语言中,体会深刻的道理,启发他们对世界和人生的思考。
热门推荐
  • 蝶恋花:凤舞罗裳

    蝶恋花:凤舞罗裳

    她为什么会爱上这个男人?没人可以解释,因为她真的很爱很爱他。很爱很爱。重重情劫,为何唯独爱一字将其沉浸其中?我真的不想走出这里,因为只有在这里,我才可以看到爱我的他。到底还要多久,才能醒来,或许,很久很久,永生永世......
  • 子若离亦不弃

    子若离亦不弃

    毫无预兆的坠入这个陌生的世界,本性善良带点腹黑的她因这个纷扰的世间和各色各样的人物而困扰,扑朔迷离的前世之因将她磨合得冰冷杀气凌人,秉着宁我负人决不让人负我的心态,狠狠的伤害着爱她的那些人,然而她的迫害阻止不了他们的爱,是幸运还是隐藏的伤痕,有谁会真的明白呢?她明白的吧。你,你,还有你。谁愿与我白首偕老,若离亦不弃。
  • 荆棘赛场

    荆棘赛场

    《战域》,一款风靡全球的游戏,巨额的利益足以引起别国的觊觎!他,一个小丑,又怎么在电子竞技的职业联赛中浮浮沉沉?!一帮为了胜利,为了梦想的年轻,在不断追逐胜利的同时,有将拥有那些精彩的故事?她,一个集团的继承人,竟然跑来战队只为逃避被安排的命运?他,一个职业联赛开始时的巨星,当初,为何突然失踪?现在,又为何重新出山?他好强、他自尊、她泼辣、她睿智,他们就是这样一帮年轻人,每个人都有自己的故事,唯一共同的,就是他们都有梦想,并为之努力奋斗!所以,《战域》职业联赛的世界之战,电子竞技界的世界杯,等着,李想和他的战队来了!!
  • 大神很高冷

    大神很高冷

    年收入近七十万,身高一九二,有颜有肌肉,爱游戏爱电影,爱游泳爱骑行……这样一个近乎完美的老爷们唯一的烦恼就是——二十八了,还没结婚。“小俊啊,你弟媳妇都要生了,你怎么还不张罗着找女朋友呢?”“妈,不要叫我小名……”“世涛啊,你别整天只顾着玩那个什么破游戏,找女朋友最要紧!”“意思是我可以在游戏里找吗?”“当然……诶?”
  • 糖尿病自然疗法

    糖尿病自然疗法

    书中所介绍的各种自然疗法,有继承前贤的经验,也有编著者长期的实践经验,内容翔实,简单易行,疗效确切,融科学性、知识性、实用性于一体,文字通俗易懂,内容深入浅出,适合城乡广大群众阅读和选用。
  • 罪恶挽歌

    罪恶挽歌

    在人魔共分天下的时代,人就是人,魔就是魔,本应如此。却出现不被双方所接受的悲剧之种。这些坐拥可怕力量的混血种,被称之为“使徒”,“怪物”。昔日黑道王者重生降临,携带九张一次性魔卡,率领所有“使徒”三分天下。构建一个属于“使徒”的第三帝国,为本不属于她们的罪恶,奏响一曲挽歌。PS:努力,友情,胜利,是我书中永恒的主题。
  • 师傅退后,徒儿来

    师傅退后,徒儿来

    装备榜上排名第八,操作犀利,全服第三大势力帮派的帮主从不收徒的墨白大神竟然收徒了!此消息一出,瞬间传遍整个服务器,大家忙着奔走相告,各个频道也异常热闹起来。身为当事人的墨白大神脑中瞬间蹦出一句:卧槽,手滑了!
  • 一遇傅少误终身

    一遇傅少误终身

    苏子瑜甩掉渣男后,捕获一枚优质男神。世人都说一遇傅少误终身,可那傅少却对苏子瑜说:“遇到你是我最大的幸运。”苏子瑜则是回答:“我也一样,遇到你也是我最大的幸运。”两人历经挫折,凭着双方的极深感情,最终走在一起。
  • 女娲部队之铁血凤凰

    女娲部队之铁血凤凰

    一个神秘的军方部队,一个特别的行动小组,一群巾帼不让须眉的铁血凤凰,在保卫国家中做出了一次又一次的牺牲。面对邪恶的敌人,面对无耻的恶魔,她们挺身而出,在正义与邪恶的背后默默的付出,她们的喜怒哀乐,她们的生活点滴不再属于个人,女人已不能诠释她们,战士也显得苍白无力。她们是一群军魂,国之骄傲。
  • 总裁霸爱,老公请节制

    总裁霸爱,老公请节制

    “求求你,放过我……”“你的身体比嘴巴要诚实得多!”一场惊心设计,他夺走了她的第一次……叶薇表示就当被狗咬了一口算了,可眼前的这个总裁太讨厌了,每天晚上都来压榨她!一次结束还要来第二次!“老公大人,能不能节制一点!”某腹黑BOSS点了点头,“好,一次一个姿势,重新来!”